Surname	Centre Number	Candidate Number
First name(s)		0

GCSE

C300UA0-1

THURSDAY, 16 MAY 2024 - MORNING

MATHEMATICS – Component 1 Non-Calculator Mathematics HIGHER TIER

2 hours 15 minutes

ADDITIONAL MATERIALS

An additional formulae sheet.

The use of a calculator is not permitted in this examination.

A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the need for good English and orderly, clear presentation in your answers.

JUN24C300UA0101	

For Ex	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	3	
2.	3	
3.	5	
4.	2	
5.	4	
6.	5	
7.	4	
8.	5	
9.	3	
10.	4	
11.	6	
12.	4	
13.	2	
14.	4	
15.	6	
16.	13	
17.	3	
18.	9	
19.	7	
20.	8	
21.	4	
22.	4	
23.	7	
24.	5	
Total	120	

Formula list

Area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a sphere = $\frac{4}{3}\pi r^3$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Kinematics formulae

Where a is constant acceleration, u is initial velocity, v is final velocity, s is displacement from the position when t=0 and t is time taken:

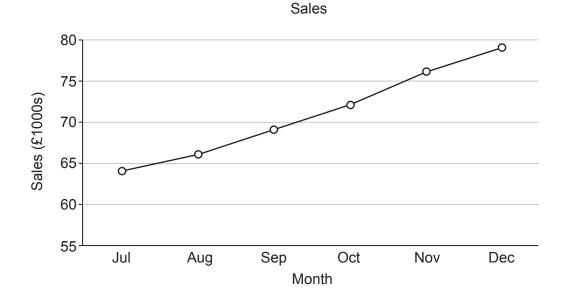
$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

$\overline{}$	
0	
⋖	
\supset	
0	
0	
က	~
()	~
_	_

		Answer a	I questions.		
. [Estimate the value of $\frac{2}{3}$	$\frac{2 \cdot 01^3 \times \sqrt{98 \cdot 5}}{0 \cdot 195}.$			[3]
. (Solve $11c + 3 = 4(c+2)$).			[3]
•	(a) Write 2475 as a p	product of its prime fa	ctors in index form		[3]
	(b) Write down the s Give your answe	quare root of 64×5 ⁴ r as a product of prin	×7 ⁴ . ne factors in index f	orm.	[2]


[2]

4. Sara works for the winter-clothing company Zipski. The table below shows the monthly sales figures for 2023.

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Sales (£1000s)	90	83	75	68	65	62	64	66	69	72	76	79

Sara used the information in the table to draw the graph below.

Give two reasons why Sara's graph may be misleading.

Reason 1:
Reason 2:

© WJEC CBAC Ltd.

- 5. Pippa and Joe are working on a school project. The project is based on the use of the local leisure facilities.
 - Pippa decides to ask adults how much they spend on gym membership each month. In the box below, write a suitable question with appropriate response boxes to collect this information. [2]

Question	
Response boxes	

Joe asked some adults how many hours they each spent at the leisure centre during the previous week.

His results are shown below.

Number of hours	0-4	5–9	10–14	15–19	20–24
Number of adults	9	2	1	1	2

Joe accurately calculated an estimate of the mean time spent per adult to be 7 hours.

In his project he stated:

'On average, the adults in my survey each spent 7 hours at the leisure centre last week.'

(i)	Explain why the mean is not the best average to use for this data.	[1]
• • • • • • • • • • • • • • • • • • • •		
(ii)	Give one other reason why Joe's results may not be reliable.	[1]

Turn over. © WJEC CBAC Ltd. (C300UA0-1)

[1]

	mpty water tank is filled using a hose with a steady rate of flow. ank takes: 30 minutes to fill if water is added at x litres/min 40 minutes to fill if the water is added at $(x-2)$ litres/min.	E
	an equation in terms of x . the equation and hence find the capacity of the tank in litres.	[5]
Γhre Γhey	e friends, Louis, Krystal and Jamal win some money in a competition. share the money in the ratio 3 : 7 : 11.	
Γhree Γhey (a)	e friends, Louis, Krystal and Jamal win some money in a competition. share the money in the ratio 3 : 7 : 11. What fraction of the total money won is given to Jamal?	[1]
They	share the money in the ratio 3 : 7 : 11.	[1]
Γhey (a)	Share the money in the ratio 3 : 7 : 11. What fraction of the total money won is given to Jamal? Jamal spends £45 of the money he won. He now has exactly twice as much as Louis won.	
Γhey (a)	Share the money in the ratio 3 : 7 : 11. What fraction of the total money won is given to Jamal? Jamal spends £45 of the money he won. He now has exactly twice as much as Louis won.	
They (a)	Share the money in the ratio 3 : 7 : 11. What fraction of the total money won is given to Jamal? Jamal spends £45 of the money he won. He now has exactly twice as much as Louis won.	
Γhey (a)	Share the money in the ratio 3 : 7 : 11. What fraction of the total money won is given to Jamal? Jamal spends £45 of the money he won. He now has exactly twice as much as Louis won.	

© WJEC CBAC Ltd.

only

PMT

p and n are two non-zero numbers. p is a positive number and n is a negative number. 8.

> Look at the statements in the table below. For each statement, choose one of the following:

> > 'Always true', 'Never true' or 'Sometimes true'.

Tick (✓) **one** box for each statement.

[2]

Statement	Always true	Never true	Sometimes true
$p^2 = n^2$			
<i>p</i> < <i>n</i>			
$\frac{n}{p}$ < 0			
$n^2 > p^3$			

(b)	Calculate the value of the reciprocal of $3\frac{1}{2}$. Give your answer in its simplest form.	[2]
(c)	Write down the value of 0·2 ⁰ .	[1]
•••••		

Turn over.

9.	6 printers take 36 minutes to print a number of identical booklets. How long will it take 9 printers to print half as many of these booklets? You may assume that all printers print at the same rate.						[3]	
1 0.	(a)				nas been reduce as the original p		m?	[2]
	(b)	Perc (i)	A number i	is decreased b	culated using moy 33% of its valued	lue.	decrease	[1]
			0.67	− 1·33	− 0·67	0.33	0.77	[-1
		(ii)	This is don	ie 3 times, ead	y 6% of its value th time increasi would find the v	ng the previou		[1]

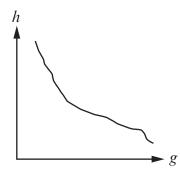
$\overline{}$	
0	
A	
\supset	
0	
0	
က	0
O	C

11.	Three friends, Luka, Mali and Nina buy some fruit.
	Luka buys 3 apples and 4 bananas and pays £2.70. Mali buys 2 apples and 3 bananas and pays £1.95.
	Use an algebraic method to calculate how much Nina pays for 4 apples and 2 bananas. [6]
	Nina pays

12.	(a)	Calculate the value of $\frac{1 \cdot 29 \times 10^5}{3 \times 10^{-7}}$. Give your answer in standard form.	[2]
	(b)	Calculate the value of $(7 \cdot 6 \times 10^5) + (3 \times 10^4)$. Give your answer in standard form.	[2]
13.		$232 \times \left(2^3\right)^7$ in the form 2^n .	[2]

JA01	
C3001	7

Pr SI	ove that now all y	every term of the cour working.	is given by the expression sequence is an even number of the sequence is a sequence is a sequence is a sequence is a sequence in the sequence is a sequence is a sequence in the sequence is a sequence in	mber.	
					••••
(b) Th	ne diagra	am shows four pat	terns made using rectan	gular tiles.	
Patte	n 1	Pattern 2	Pattern 3	Pattern 4	
Fi	nd an ex	rpression for the n	umber of rectangular tiles	s needed for the n th pattern.	


15. Pupils in a GCSE class have to perform two experiments.

(a) Jenny performs the first experiment.

She sketches a graph of her results. She thinks the graph shows that the variable h is proportional to the cube root of the variable g.

Explain why Jenny cannot be correct.

[1]

© WJEC CBAC Ltd.

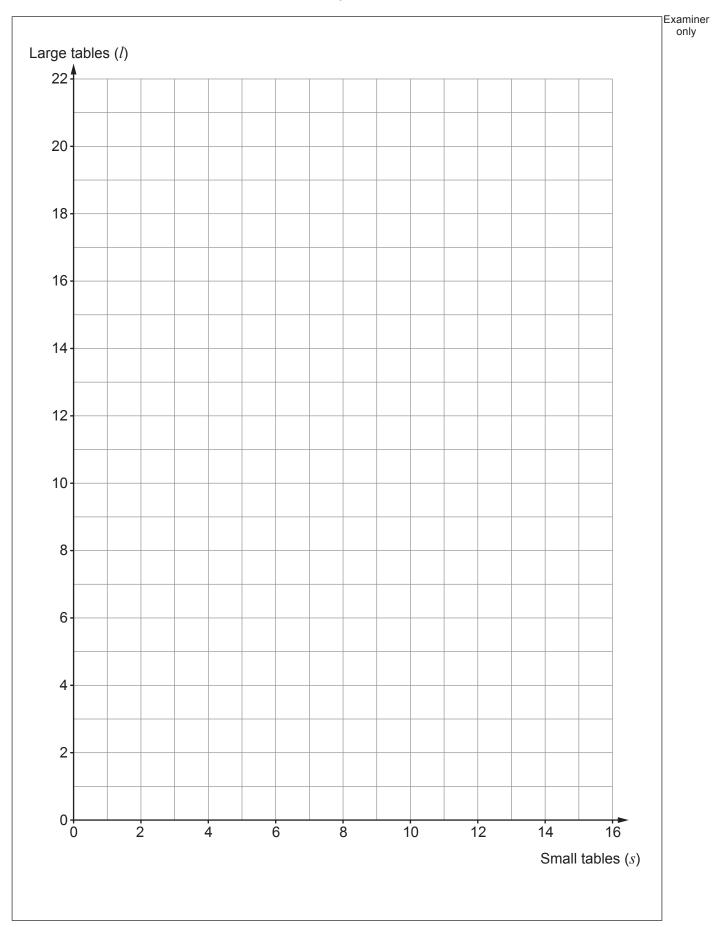
It has been found that p is inversely proportional to the square root of q .					
(i)	When $p = 36$, $q = 36$. Write a formula f	= 25. for p in terms of q	q.		[3
(ii)	Use the formula	to complete the	table below.		[2
	p		36	45	
	q	9	25		
	_				
					J
······					

16.	(a)	A new restaurant needs to buy some tables.
		Small tables each seat 4 people.
		Large tables each seat 6 people.

Each of the following three conditions must be met:

- There must be more than 12 large tables.
- The number of large tables must be less than double the number of small tables. The total number of seats must be less than 120. 2.
- 3.

Let s represent the number of small tables and l represent the number of large tables.


Complete the table below by writing the inequalities for conditions 2 and 3. [2]

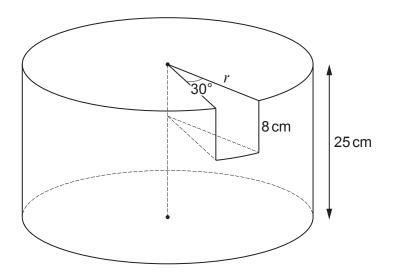
Condition	Inequality
1	<i>l</i> > 12
2	
3	

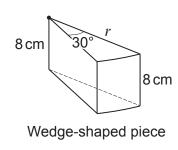
(ii)	On the graph paper opposite, draw the region that satisfies all three inequalities indicate clearly the region that is your answer.	s. [4]
(iii)	The restaurant owner makes a 4th condition. There cannot be exactly 13 large tables. From your graph, write down the number of small and the number of large table that can be bought where all four conditions are satisfied.	es [1]
	that can be bought where an roar conditions are satisfied.	
••••	Number of small tables Number of large tables	

© WJEC CBAC Ltd.

	•	9 custo	mers ha	ate a mea d to wait waited le	betwe	en (0 an	d 15		utes	i						
	(i)			istogram													[2]
Fre	requency Density																
110	5	icy Deris	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												\Box		
	4																
	•																
	3																
	2																
	1																
	0		10	20		30		4	10		5	0			60	-	
										١	Vait	ing	tim	es	(mi	inutes)	
	(ii)	Calcula 30 min	ate the p	ercentag their meal	e of t	he 1	10 c	usto	mer	s wh	o ha	ad t	:O W	/ait	lon	ger than	[4]

© WJEC CBAC Ltd.


17.	Factorise and hence solve the following equation. [3]] Exa
	$3x^2 + 7x - 20 = 0$	-
18.	A cheese factory makes two different types of cheese. Both types of cheese are in the shape of a cylinder.	
	(a) The first cheese has radius 12 cm and height 7 cm. Work out the total surface area of this cheese. Give your answer as a multiple of π . [4]	
		-



[5]

(b) The second cheese has radius $r \, \text{cm}$ and height 25 cm. A cheese taster working at the factory cuts a wedge-shaped piece out of this cheese. It is cut to the centre of the cheese with an angle of 30° and a depth of 8 cm.

Work out the volume of the wedge-shaped piece as a **fraction** of the whole cheese. Give your answer in its simplest form.

Diagrams not drawn to scale

, -	and Elis sit examinations at a college.						
(a)	Anya sits two examinations, one for Spanish and the other for French. The probability that Anya passes Spanish is 0·6. The probability that Anya passes French is 0·7. The probability of Anya passing Spanish is independent of her passing French.						
	Anya tries to calculate the probability of her passing exactly one examination.						
	She writes $0.6 \times 0.3 = 0.18$						
	(i) Without giving any calculations, explain why this answer is not fully correct.	[1]					
	(ii) Calculate the probability of Anya passing exactly one examination.	[2]					
		······					
		··········					
(b)	Elis sits one examination.						
(b)							
(b)	The examination has 75 multiple choice questions. For each question:						
(b)							
(b)	For each question:there are five possible answers to choose from						

$\frac{1}{2}$ $\cos 30^{\circ}$ $\tan 30^{\circ}$ $\tan 30^{\circ}$ 2 cm $Diagram not drawn to scale$ (b) The diagram shows a cuboid. $A, B, C \text{ and } D \text{ are vertices of the cuboid.}$ $BD = 10 \text{ cm, } AC = 12 \text{ cm and } D \hat{B}C = 30^{\circ}.$ $Diagram not drawn to scale$ $Calculate the distance AD. You must show all your working. [6]$	(a)	Complete the table below. Write both missing values in The sketch of the equilateral	surd form. triangle may help	you.	[2]			
tan 30° tan 30° $Cos 30°$ Co		sin 30°	1/2	2				
2cm $Diagram \ not \ drawn \ to \ scale$ (b) The diagram shows a cuboid. $A, B, C \text{ and } D \text{ are vertices of the cuboid.}$ $BD = 10 \text{cm}, AC = 12 \text{cm} \text{ and } D \widehat{B}C = 30^{\circ}.$ $Diagram \ not \ drawn \ to \ scale$ Calculate the distance AD .		cos 30°		2 cm / 2 cm				
(b) The diagram shows a cuboid. $A, B, C \text{ and } D \text{ are vertices of the cuboid.}$ $BD = 10 \text{ cm}, AC = 12 \text{ cm and } D \hat{B}C = 30^{\circ}.$ Diagram not drawn to scale Calculate the distance AD.		tan 30°						
A, B, C and D are vertices of the cuboid. $BD = 10 \text{cm}$, $AC = 12 \text{cm}$ and $DBC = 30^{\circ}$. $A = 10 \text{cm}$, $AC = 12 \text{cm}$ and $AC = 12 \text$								
Diagram not drawn to scale Calculate the distance AD.	(b)	A, B, C and D are vertices of	f the cuboid.					
Calculate the distance AD.					e			
			ing.					
	•••••							
	•••••							

© WJEC CBAC Ltd.

	The magn of the three values $\frac{12}{\sqrt{2}}$ and $(\sqrt{2})^5$ is $2\sqrt{2}$	Ex
. 1.	The mean of the three values x , $\frac{12}{\sqrt{3}}$ and $(\sqrt{3})^5$ is $6\sqrt{3}$. Calculate the value of x .	
	Give your answer in the form $a\sqrt{3}$ where a is an integer.	[4]
2.	Use the method of completing the square to find the coordinates of the turning point of the curve $y = x^2 + 14x + 70$.	[4]
	curve $y = x^{2} + 14x + 70$.	[4]
	Coordinates of the turning point (,	

23. The vectors **OP**, **OQ** and **OR** are shown in the diagram.

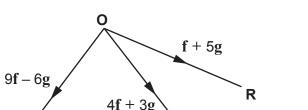
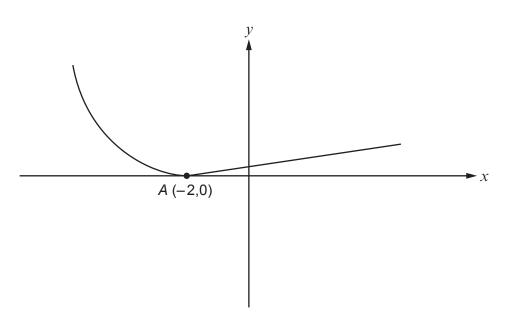


Diagram not drawn to scale

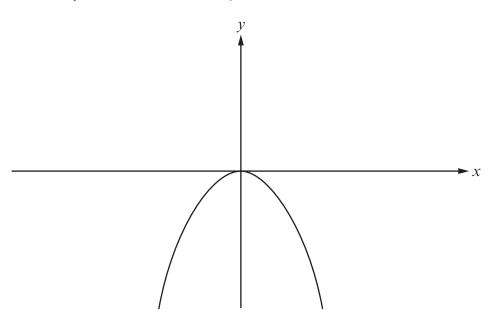
(a)	(i)	RQ = kOP. Find the value of k. You must show all your working.	[3]
		The value of k =	
	(ii)	Write down two facts about the lines OP and RQ. Fact 1:	
		Fact 2:	
(b)	O is	the midpoint of the line PX. PX in the form $m\mathbf{f} + n\mathbf{g}$ where m and n are integers.	[2]


© WJEC CBAC Ltd.

PMT

24. (a) The diagram below shows a sketch of y = f(x). The point A has the coordinates (–2,0).

On the same diagram, sketch y = f(x-3). Mark clearly the new coordinates of point A.


[2]

(b) The diagram below shows a sketch of y = g(x).

On the same diagram, sketch y = -g(x) + 5. Mark clearly the coordinates of the point where this sketch intersects an axis.

[3]

END OF PAPER

Question	Additional page, if required. Write the question number(s) in the left-hand margin.	Exa
number	write the question number(s) in the left-hand margin.	_ °

